Biomedicines. 2025 Apr 8;13(4):906. doi: 10.3390/biomedicines13040906.
ABSTRACT
According to the literature, cardiovascular diseases (CVDs)-including myocardial infarction, stroke, and venous thromboembolism (VTE)-are among the leading causes of mortality and morbidity worldwide. Evidence suggests that CVDs share common risk factors and pathophysiological mechanisms. Similar to the Mosaic Theory of Hypertension proposed by Irvine Page in 1949, the pathophysiology of VTE is multifactorial, involving multiple interacting processes. The concept of immunothrombosis, introduced by Engelmann and Massberg in 2009, describes the interplay between the immune system and thrombosis. Both thrombosis and hemostasis share core mechanisms, including platelet activation and fibrin formation. Additionally, immune mediators-such as monocytes, neutrophil extracellular traps (NETs), lymphocytes, selectins, and various molecular factors-play a critical role in thrombus formation. This review highlights inflammation as a key risk factor for pulmonary embolism (APE). Immunity is central to the complex interactions among the coagulation cascade, platelets, endothelium, reactive oxygen species (ROS), and genetic factors. Specifically, we examine the roles of the endothelium, immune cells, and microRNAs (miRNAs) in the pathophysiology of APE and explore potential therapeutic targets. This review aims to elucidate the roles of the endothelium, immune cells, and miRNAs in the pathophysiology of APE and explore potential future perspective.
PMID:40299499 | PMC:PMC12025274 | DOI:10.3390/biomedicines13040906