Small. 2025 Apr 3:e2412279. doi: 10.1002/smll.202412279. Online ahead of print.
ABSTRACT
Staphylococcus aureus (S. aureus) as common Gram-positive pathogenic bacteria, causes local and systemic infections, including sepsis and bacteremia. In particular, the high prevalence of drug-resistant S. aureus further complicates the post-infection treatment. Highly effective S. aureus vaccines are urgently desired. Herein, a novel S. aureus vaccine (MnO2@FS) is developed via biomineralizing manganese dioxide (MnO2) on formaldehyde-fixed S. aureus (FS). In such vaccine, with FS to induce bacteria-specific immune responses, MnO2 via releasing Mn2+ can activate the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway and innate immunity, which would be rather helpful to enhance immune responses against bacterial infections. It is found that bone marrow-derived dendritic cells (BMDCs) treated with MnO2@FS show higher FS and manganese uptake, and enhanced cytokine secretions. In mice, after being immunized with MnO2@FS, the level of S. aureus-specific antibody is significantly improved compared with FS and simple mixture of FS and MnO2 (FS+MnO2). Furthermore, MnO2@FS immunized mice can clear infected bacteria faster and showing higher survival rate in lethal models, outperforming FS and FS+MnO2 immunizations. In addition, the vaccine effectively controls abscess development in a hospital-acquired S. aureus infection model. This study thus presents a new strategy for the construction of highly potent yet safe bacterial vaccines.
PMID:40178324 | DOI:10.1002/smll.202412279