perfDSA: Automatic Perfusion Imaging in Cerebral Digital Subtraction Angiography

Scritto il 24/04/2025
da Ruisheng Su

Int J Comput Assist Radiol Surg. 2025 Apr 24. doi: 10.1007/s11548-025-03359-4. Online ahead of print.

ABSTRACT

PURPOSE: Cerebral digital subtraction angiography (DSA) is a standard imaging technique in image-guided interventions for visualizing cerebral blood flow and therapeutic guidance thanks to its high spatio-temporal resolution. To date, cerebral perfusion characteristics in DSA are primarily assessed visually by interventionists, which is time-consuming, error-prone, and subjective. To facilitate fast and reproducible assessment of cerebral perfusion, this work aims to develop and validate a fully automatic and quantitative framework for perfusion DSA.

METHODS: We put forward a framework, perfDSA, that automatically generates deconvolution-based perfusion parametric images from cerebral DSA. It automatically extracts the arterial input function from the supraclinoid internal carotid artery (ICA) and computes deconvolution-based perfusion parametric images including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and Tmax.

RESULTS: On a DSA dataset with 1006 patients from the multicenter MR CLEAN registry, the proposed perfDSA achieves a Dice of 0.73(±0.21) in segmenting the supraclinoid ICA, resulting in high accuracy of arterial input function (AIF) curves similar to manual extraction. Moreover, some extracted perfusion images show statistically significant associations (P=2.62e 5) with favorable functional outcomes in stroke patients.

CONCLUSION: The proposed perfDSA framework promises to aid therapeutic decision-making in cerebrovascular interventions and facilitate discoveries of novel quantitative biomarkers in clinical practice. The code is available at https://github.com/RuishengSu/perfDSA .

PMID:40272658 | DOI:10.1007/s11548-025-03359-4